
J .  Fluid Mech. (1967), vol. 29, part 4, pp .  765-779 

Printed in  Great Britain 
765 

Shock curvature and gradients at the tip of pointed 
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The shock curvature and flow variable gradients at  the tip of a pointed body 
caused by non-equilibrium effects are considered. Co-ordinates introduced by 
Chester (1956) are used since they offer a convenient way of treating the boundary 
conditions. The desired functions are obtained by solving numerically a system 
of linear ordinary differential equations. These equations have a singularity; the 
nature of the singularity is found analytically, and its numerical treatment is 
discussed. The specific non-equilibrium effect considered is vibrational relaxation 
in a pure diatomic gas. Representative results are given for flow of N, over a 
cone for a comprehensive range of Mach number and cone angle. There is a 
point analogous to the Crocco point. The exact results are compared with pre- 
dictions from (i) a hypersonic, small disturbance theory; (ii) the application of 
anintegral method; (iii) characteristic calculations. Inanappendix, a comparative 
discussion is given of results for frozen flow over ogival bodies. 

1. Introduction 

When non-equilibrium effects are considered in the fluid dynamic equations, 
the classical similar solutions describing supersonic flow over wedges and cones 
no longer exist. To gain some insight into non-equilibrium effects one can seek 
solutions valid in restricted regions of a flow, e.g. the vicinity of the tip of a 
wedge or cone. The first approximation t o  the flow here is the frozen (similar) 
solution. The next approximation brings into evidence the non-equilibrium 
effects, such as the curvature of the shock wave. The purpose of this work is 
to find this approximation for the case of flow over a cone and pointed ogives in 
general. 

The corresponding problem for wedge flow (Sedney 1961) is resolved by explicit 
solution of algebraic equations. For cone flow, differential equations with two- 
point boundary conditions (at shock and body surfaces) must be solved. The 
coefficients of these equations which involve the frozen conical flow solution, 
give rise to a singular point at  least in all choices of co-ordinates investigated. 

There is a close analogy between the problem of approximating the non- 
equilibrium flow in the neighbourhood of the tip of a wedge or cone and that of 
approximating the equilibrium or frozen flow near the tip of a pointed ogive 
body. The latter problem was solved by Crocco (1937) for two-dimensional flow 

t Present address: R.I.A.S., 1450 S. Rolling Road, Baltimore, Maryland 21227. 
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and by Shen & Lin (1951) for axisymmetric flow. In  order to treat the singularity 
for the axisymmetric case, and especially its effects on higher approximations, 
Kogan (1956) formulated the problem in terms of Crocco’s stream function. This 
refinement, however, is not included in the values of shock curvature hitherto 
published (Shen & Lin 1951; Bianco, Cabannes & Kuntzmann 1960). In  the 
method of solution adopted here for determining shock curvature and gradients 
caused by non-equilibrium effects, these same quantities for frozen flow over 
ogival bodies are obtained as a by-product. Significant differences were obtained 
between the present results and those of Shen & Lin (1951) and Bianco et al. 
(1960). This is discussed in the appendix. 

The specific source of the non-equilibrium effects considered here is vibrational 
relaxation of a diatomic gas; the present method, however, can be employed for 
dissociation, ionization, etc. The model of a vibrationally excited gas serves as 
well as any other example to illustrate the technique and effects. 

A distinctive feature of this analysis is the choice of co-ordinates. Specifically 
the co-ordinates used are those introduced by Chester (1956) in his study of 
hypersonic flow over blunt bodies. The chief advantage of this choice is the ease 
of handling the boundary conditions on the shock; for here the unknown shock 
curve is mapped into one of the co-ordinate lines. Also the singular point a t  the 
tip is spread out into a line interval along the second co-ordinate axis. The latter 
advantage is also gained with polar co-ordinates, but not the former. The differen- 
tial equations now have an integrable, inverse one-half power, type of singularity 
at  the origin. This could be handled in the standard way-using expansions 
to match the numerical solution; instead theentireproblemistreatednumerically, 
the authors believing this procedure to be more efficient. The singularity is 
treated by a ‘detailed approach to the body’ which involves decreasing the step 
size in the Runge-Kutta numerical integration procedure. 

One motivation for this work arose in the computation of non-equilibrium 
flows over cones (Sedney & Gerber 1963) by the method of characteristics. That 
calculation was initiated by assuming a finite frozen flow region, The effect of this 
error can be relatively large and propagate two or three lengths of the original 
frozen region even though the grid size is twenty to thirty times less than this 
length. The behaviour near the tip was studied by the laborious process of choos- 
ing successively smaller frozen flow regions; the method presented here is more 
satisfactory for obvious reasons. The results of the present paper can be used as 
a check on those from the characteristic method. Alternatively, they can be used 
as input to start the characteristics calculation. With the improved approxima- 
tion to the flow near the tip, a larger grid size is possible and a saving on computa- 
tion time realized. 

Having the exact results allows comparisons to be made with various approxi- 
mate methods; this is done in Q 6. 

2. Flow equations 
The axisymmetric flows to be considered are steady, inviscid and isoenergetic. 

The equations for conservation of mass, momentum, and energy are, in non- 
dimensional form, 
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&(y - 1) 2M: (u2 + v2) + T + E = h p  (2.4) 

See figure 1 for notation (where priaes indicate dimensional quantities); p is 
density, p is pressure, T is temperature, E is vibrational energy per unit mass, 
y is the ratio of frozen specific heats, and it, is the constant total enthalpy. Vari- 
ables aremadedimensionless as follows: lengths by 7; qk,  where 7; is the relaxation 

V' 

Shock 
y' 

FIGURE 1. Cross-sectional view of flow field in the physical plane. (q' = flow speed; 
I/, v' = velocity components in co-ordinate directions.) 

time evaluated at  the frozen conditions on the body tip and q& is free-stream velo- 
city; velocities, pressure, density and temperature by their free-stream values; 
vibrational energy by ci,TL, the frozen enthalpy in the free stream. The model 
chosen for the diatomic gas with vibrational relaxation is discussed in Sedney 
(1961). The perfect gas law is assumed 

P=PT 
and the rate equation is 

aE aE 
U-+v- = [E*(T)-E]/7 @, ax ay 

where 7 is the relaxation time referred to 7;, and E*(T) is the local equilibrium 
value of E, given by 

E*(T) = ($Z)/(eZIT - 1) 
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with 2 = O;/Tk, 0; = characteristic vibrational temperature. The variation 
of T with T and p is approximated by 

' = exp [(c/T)' - (c/Tb)gl 

and the subscript b refers to conditions on the body at the tip. The constant c 
is evaluated for various temperature ranges by fitting experimental data; e.g. 
those of Blackman (1956) or Millikan & White (1963). 

The independent variables x, y are transformed to c , q  by 

5 = 2k(XY Y)/Y2, 7 = Y ,  (2.7) 

where $ is the dimensionless streamfunction 

a*px = - ypv, a+py = ypu. 

Thus 

and equations (2.1), (2.2), (2.3) end (2.6) become, respectively, 

(2.11) 

Note that if vibrational energy in the free stream is negligible (E, = 0) 

I+= 1+4(?-1)Mg.  

This would be the case if T, 4 0, and equilibrium existed in the free stream. 
If the free stream is out of equilibrium Em will, in general, not be negligible. 
This would occur, e.g., if a cone were placed in the test section of a shock tunnel, 
since the free stream is generally frozen in such a facility. In  any case, behind the 
shock E takes its free-stream value. 

The variables 6 and 7 were employed by Chester in the study of hypersonic 
flow past blunt bodies. In  the present problem the shock wave is attached at  the 
pointed tip of the body, but the flow region is mapped into the same strip of 
the (Q r)-plane as for the case of a detached shock. This strip is shown in figure 2, 
where it is seen that the tip transforms into the line segment 7 = 0, 0 < f; < 1. 
This stretching is necessary to examine the singularity a t  the tip. It is also 
accomplished by using polar co-ordinates (when properly plotted on rectangular 
axes); however, the shock curve is unknown then. The same strip is obtained if 
a body-oriented co-ordinate system is used and the normal co-ordinate is nor- 
malized by the total distance between the body and the shock. 
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If the body is a cone and the flow is either frozen or in equilibrium so that the 
flow is conical, then the flow variables are constant along the lines 5 = constant. 
This is shown by using the fact that $is homogeneous of degree two in the variables 
x and y, a result which follows from the definition of $r and the fact that pu and 
pu are homogeneous of degree zero. The streamlines are always the hyperbolae, 
<yz = constant. 

Body 

t 
Shock 

I !  

FIQWRE 2.  Flow region in the (6, v)-plane. 

On physical grounds one would expect that the flow at the tip, 7 = 0, should 
be frozen; this is easily proved from (2.8)-(2.11). Setting 7 = 0, all terms con- 
taining vanish, aE/ag = 0, and the remaining equations give 

where 

(2.12) 

(2.13) 

Since aE/a< = 0 along 7 = 0, E is then constant there; i.e. the flow is frozen at the 
tip. The constant will be the free-stream value of E. 

The equations (2.12) are those for conical frozen (Taylor-Maccoll) flow in the 
co-ordinates 5 , ~  ; their numerical solution is a necessary step in the determination 
of the gradients since the frozen flow variables appear as coefficients in the 
gradient equations. This solution is obtained by integrating from the shock, 
6 = 1, to the body, 5 = 0, given M,, y and /I, where tanp  is the shock wave slope. 
The initial conditions at  the shock are the standard frozen shock relations: 

49 

(2.14) 

Fluid Mech. 29 
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and so forth. The half-angle of the body tip is determined from 

Raymond Sedney and Nathan Gerber 

taneb = ( V / U ) ~ = , .  (2.15) 

One can integrate several cases and then interpolate to find a desired half-angle 
or set up an iteration procedure to yield this result. 

3. Gradient equations 
The equations for the gradients of the flow variables are obtained by differen- 

tiating (2.8)-(2.11) with respect to r ] ,  then setting r] equal to zero. This requires 
the assumption? that a2/apar] = a2/ar] ag. 

The following notation is introduced: 

(3 .1 )  1 u = (au/ay),=, ,  v = (av/ar]),=o, Q = (aE/ar]),=,, 
R = (aP/ar] ) l r=o ,  p = (aP /w ,=o .  

Hereafter, it is to be understood that all quantities are evaluated at r ]  = 0. 
The differential equations for the gradient functions are (where * = d/dg) 

= (Q- @ / v ) / ( 2 5 ) ,  (3.2) 

0 = (1/D) [ v G / p + b ( Q - ~ Q ) / g ] ,  ( 3 . 3 a )  

= (1/0 [ - g G / r . + f ( Q - W C I ,  (3 .3b )  

R = - [ M ~ V g ~ + ( g 2 + 2 1 2 ) ( A - € P ) / w + j ( C  -ssz)/g]/D, (3.3c) 

where the denominator D is the same as in (2 .13) .  
The coefficients g ,  b ,  f a n d j  are known functions of 6: 

where u, v, p and p have been obtained from the solution to (2 .12) ;  Q, is given 
in (2 .6 ) .  The symbol e is equal to zero for frozen flow (no vibrational relaxation), 
and one for non-equilibrium flow. 

The coefficients A ,  B, C ,  P and G are linear functions of U, V ,  R and Q: 

t The set of mathematical conditions ensuring the interchangeability of second deri- 
vatives is different from that ensuring the validity of an expansion of the form 

Neither set can be verified a priori. 
f(% C ) b +  (wash7 3- 0 ( Y Z ) .  
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Equation (3.2) can be solved separately, using the initial condition, 
a(<= 1 )  = 0 

(since E does not change along < = 1);  then a can be treated as a known function 
of 5 in (3.3). Equations (3.3) are linear equations in U ,  V and R, homogeneous 
when E = 0 and non-homogeneous when E = 1. 

The pressure gradient function Pb is obtained by differentiating (2.10) with 
respect to 7 and taking r = < = 0: 

Pb = -yM:p,(uU+vV)b. (3.6) 

Initial conditions are applied at  the shock wave, 6 = 1; conditions there will 
be designated by the subscript w. Por any function f 

af/arlg=1 = (cscP)dfIdg = (CSCP)  (4fldP)Kw, 
where G is arc length along the shock wave and K,  = d@/dc is the curvature of 
the shock. The initial conditions are 

(3.7) 1 Uw = (dU/d/?) K,  C S C ~ ,  Vw = (dv/dp) K, C S C ~ ,  
Rw = (dP/dP) K,  C S C P ,  

where du/d/3, dvl@ and dp/d/3 are obtained by differentiating the shock relations; 
e.g. (2.14). 

The solution to equations (3.3) can be written 

u = K,uh+u,, v = Kw&+K, R = KwRh+R,, (3.8) 

where U,, V, and Rh are the solutions to the homogeneous equations satisfying 
the initial conditions (3.7) with K,  = 1; U,, V ,  and R, are particular solutions 
to the non-homogeneous equations satisfying the initial conditions 

(un)w = (V,)w = (Rdw = 0. 

With the solutions uh) U,, ..., R, determined it remains to find K,  for the 
complete solution (3.8). This is found by applying the terminal condition (2.15) 
to the gradient functions. From equation (2.15) one obtains 

also 

where Kb = df3,/ds denotes the curvature of the body at the tip, and s the arc 
length along the body. Combining (3.8)) (3.9) and (3.10) gives the shock curva- 
ture in terms of the body curvature 

(3.11) 

Finally, the gradients on the body are given by 

(dp/ds)b = Pb sin 8,) (dE/ds) ,  = ab sin O,, 
(dT/ds)b = (PP-pR)b (sinBb)/pf, (dq/ds)b = (uu + v v ) b  (sin 'b ) /qb ,  

where P is given by (3.6). 
49-2 
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Equation (3.11) shows that the shock wave curvature a t  the tip of a pointed 
body of revolution is the sum of two terms : (i) the curvature for a curved body 
in frozen flow, and (ii) the curvature for non-equilibrium flow over a cone. 

Previous calculations (Shen & Lin 1951 ; Bianco et al. 1960) have been made of 
Kb/Kw for ideal gas flows (e = 0 in equations (3.3),  see appendix). These and calcula- 
tions from the present work indicate that Kb/Kw becomes zero for every axisym- 
metric body at  someM, which produces a partially subsonic, partially supersonic 
conical flow at the tip (r = 0).  This implies that, for each Bb, there is an M, for 
which, according to (3.11), 

(V, - U ,  tan 8 ) b  = 0. 
This is the ‘Crocco point’ in axisymmetric flow (see, e.g., Ferri 1954). It is also seen, 
from (3.1 l) ,  that for these same values of M, and Ob the curvature of the shock 
wave in non-equilibrium flow becomes infinite a t  the tip of the cone (where 
Kb = 0). 

4. Solution in the vicinity of the singular point 
The equations for the gradient functions (3.2) and (3.3) have a regular singular 

point at 5 = 0. Following Ince (1926) the first step in examining the nature of 
the solutions in the neighbourhood of the singular point is to set up the indicia1 
equation and find its roots. When this is done for (3.2) and (3.3) it is found that 
the roots are: 0, 0, +, +. The presence of the two double roots indicates that loga- 
rithmic terms must be included. Thus, each variable has the form 

PI + (1% 6) p 2  + 6% + (64 log 5)  p4, (4.1) 

where the Pi denote power series with unknown coefficients. Recurrence relations 
obtained by substituting these forms into the differential equations determine the 
coefficients of the power series in terms of the arbitrary constants. 

Since a numerical solution t o  equations (3.2) and (3.3) is obtained, a lengthy 
discussion of the singularity is not needed. Suffice it to say that the constant 
terms in the series Pz and P4 are zero for each variable. Thus, each gradient func- 
tion has the form 

in the neighbourhood of 5 = 0. 

constant + (@ x constant) (4.2) 

5. Numerical solution 
Equations (2.12) are first solved separately; then (3 .2)  and (3.3) are solved. 

The Runge-Kutta-Gill method is used to integrate the equations numerically. 
With high-speed computers it is possible to study the solution empirically by 

carrying out a ‘detailed approach’ to the body; that is, to systematically decrease 
the interval size in the Runge-Kutta-Gill procedure as 6 approaches zero, 
ending the calculation at  an extremely small but finite value of <( N 10-12). 
This is the method used in the present work. While admittedly not elegant, this 
procedure does produce answers in reasonably short times, and a posteriori 
tests indicate that the values obtained are correct. Thus, unique limits for the 
gradient functions are found as the integration interval and limiting g approach 
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zero; also, the calculated gradient functions exhibit the @ variation near zero, 
(4.2), which was demonstrated in $4. In  addition, the calculated solution to 
(3.2) agrees with the known value (Q = @/v) obtained from Taylor-Maccoll 
flow. 

Bb (degrees) 

FIGURE 3. Shock wave curvature at  the tip of pointed body vs. body half-angle; 
N, gas, TL = 300 O K .  Solid lines refer to cones, dotted lines to wedges. 

6. Results 
In  the case of cones (where K,  = 0) the shock curvature K ,  reduces to the 

second term of the expression in (3 , l l ) .  This quantity was calculated for a wide 
range of Mach numbers and cone angles for nitrogen at 300 OK. Results are shown 
in figure 3 (solid curves). Each curve has a vertical asymptote occurring at  a 
cone angle for which the Taylor-Maccoll flow is supersonic at  the shock wave, 
but subsonic at the body; K,  changes sign here and then decreases in absolute 
value with increasing Bb. The qualitative behaviour of K,  is similar to that of 
shock curvature at  a wedge tip, shown also in figure 3. Figure 4 shows the varia- 
tion of the pressure gradient a t  the tip of a cone; the 'Crocco point' asymptotes 
appear here also. 

From results of Millikan & White (1963) some representative values of rLq2, 
the normalizing quantity for distances, are: rAqk = 5.2, 0-26 and 0.034em for 
8, = 30", 40" and 50", respectively, at  M, = 10, p& = 1 atmosphere; for other 
p k ,  the given rAqk is to be divided by the number of atmospheres. 
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In  figure 5 the gradients of pressure, temperature, and density a t  the tip 
of a cone are given as functions of cone angle for Ma= 10, Tk = 300 O K  in 
nitrogen. The density gradient is unusual in that it is non-monotonic and changes 
sign; this changein sign takes place when the flow on the cone surface is subsonic. 

T 

Bb (degrees) 

FIGURE 4. Pressure gradient along body at tip of cone 98. cone half-angle; N, gas, 
!Pk = 300 OK. Circled dots: hypersonic small disturbance theory (Lee 1965). 

A similar type variation is found for density gradient at  the tip of a wedge and is 
indicated in this figure ; here the change in sign occurs for supersonic flow at the 
wedge surface. Similar behaviour for the density gradient in plane flow was found 
for the case of dissociating air,t using the gas model and gradient formulae of 
Spurk, Gerber & Sedney (1966). 

As mentioned in $1, the present work has application in the calculation of 
axisymmetric non-equilibrium flows. In  previous work (Sedney & Gerber 1963), 
an initial region of frozen flow was assumed in order to start a non-equilibrium 

t A characteristic calculation of one example with an initially negative density gradient 
was performed. The gradient changed sign at a distance of 3 x (initial frozen length) and 
thereafter was positive. All other flow variables were monotonic. 
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flow computation by the method of characteristics. This leads to resultsillustrated 
in figure 6 for pressure variation on the body in a typical case of flow over a cone. 
The results are clearly in error near the tip; however, a curve drawn through 

r 
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FIGURE 5. Flow variable gradients a t  tip of pointed body wu8. body half-angle; 
N, gas, TL = 300 O K ,  M ,  = 10. Solid lines refer to cone, dotted line to wedge. 

_ _ - _  
040 0.05 0.10 0.15 0.20 0.25 

s 

FIGURE 6. Application of pressure gradient calculations to check characteristic calculations ; 
N, gas, T& = 300 O K ,  M ,  = 12, Ob = 46.4". The dots are characteristic calculation re- 
sults; the slope of the dashed line is the pressure gradient computed here. 0, exact 
pressure at tip. 

the points further downstream can be faired back easily to the correct pressure 
at the tip, as evidenced by the solid curve. This furnishes an indication that the 
results downstream are correct. The gradient calculations, indicated by the 
dashed lines, give further assurance of the validity of the characteristic computa- 
tions downstream by demonstrating that the solid curve can be extended back 
to the tip pressure with the correct slope. Gradient values can also be useful in 
initiating non-equilibrium characteristic flow computations. 
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The present results can be compared with those obtained by an application of 
Dorodnitsyn's integral method (South & Newman 1965). This latter procedure 
is an approximate method which yields algebraic equations for the curvature 
and gradients at the tip of a cone. Figure 7 shows the comparison for two Mach 
numbers. The agreement, in general, is good; it is found to improve as the angle 
interval p - 0, decreases. 

'-1 0.06 

9 
I 
I 
I 
I 
I 

0, (degrees) 

FIGURE 7. Comparison of present calculations of shock wave curvature with integral method 
calculations of South & Newman; N, gas, T', = 300 OK. The lines represent results of 
present computations: solid line, M ,  = 8; dashed line, M ,  = 12. The dots represent 
results of South & Newman: m, M ,  = 8 ;  0, M ,  = 12. 

An interesting comparison can be made between these exact results and the 
predictions from the theory of hypersonic flow over slender bodies (Lee 1965). 
Applying the hypersonic small disturbance approximation results in equations 
'too complicated to be integrated analytically ', Lee then introduces an additional 
expansion in the parameter (y  - l) /(y + 1)  and carries this to three terms. The 
pressure gradient at  the tip of a cone was evaluated from this third approxima- 
tion; the results for eb = 20" are shown in figure 4. Rather large M, are required 
to have small differences. In  the comparison given by Van Dyke (1954) of hyper- 
sonic small disturbance theory with exact results for an ideal gas, M, = 6 gives 
small differences. This behaviour is presumably caused by the introduction of 
the Newtonian type of approximation. Lee illustrates his results forM,, = 15, 
8, = 20" and shows agreement with exact calculation to within 2 yo for pressure. 
The present comparison shows that the pressure gradient is 16 yo larger than the 
exact result; this would explain the relatively abrupt overexpansion shown in 
Lee's results. 
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7. Conclusion 
A method is given for determining the shock curvature and flow variable 

gradients at the tip of a pointed body of revolution. The use of variables intro- 
duced by Chester simplifies setting up the calculations as compared with use of 
polar co-ordinates. Although the specific source of departure from equilibrium 
considered here is vibrational excitation, the same technique can be applied to 
a dissociating gas, with the same qualitative results expected. 

It is shown that the shock curvature at the tip of a pointed body of revolution 
is the sum of two terms: (i) the curvature for a curved body in frozen flow and (ii) 
the curvature for non-equilibrium flow over a cone. Also, the Crocco point for 
non-equilibrium flow occurs at the same Mach number and cone angle combina- 
tion as for frozen flow. 

The authors wish to acknowledge here the programming and computing 
work of Donald Taylor and the assistance of Joan M. Bartos. 

Appendix. Some remarks on the flow of a perfect gas over pointed 
ogives 
As pointed out in the introduction, there is an analogy between the problem 

considered in this paper and that of the flow in the neighbourhood of the tip of 
a pointed ogive when the flow is considered as frozen or in equilibrium. Since, 
in the method of solution for the non-equilibrium flow given above, the flow 
variable gradients and shock curvature-for an ideal gas-are obtained as 
part of the whole solution, it is appropriate to compare these results with those 
previously published. This is especially appropriate since some significant 
differences were noted. 

In  the work of Shen & Lin (1951), a spurious logarithmic singularity was found. 
This was an analytical result and, in an addendum, it was later stated to be not 
actually present. The amended statement would be analogous to showing that 
Pz of (4.1) is identically zero. This point is also discussed by Van Dyke (1954). 
Since the numerical results were independent of the analysis of the singularity, 
their validity is not in question. However, the numerical results depend on extra- 
polation of the solution to the body surface. 

Bianco et al. (1 960) give extensive tables for the ratio of curvatures of shock 
and body. No mention is made of any singular behaviour; these numerical results 
were also obtained, presumably, by extrapolation to the body surface. Using 
a first integral, Cabannes (1962) (see also Cabannes & Stael 1961) rephrases the 
differential equations so that the singularity occurs only in particular integrals 
of non-homogeneous equations. No results for, say, curvature ratio were given 
however. 

Only a brief summary of the differences will be given here. For an initial angle 
8, = 20" and M, = 1-88 the result for curvature ratio of Shen & Lin is 6 yo lower 
than our results; that of Bianco et al. is 18 % lower. For smallerM, the percentage 
difference is greater and vice versa. In the neighbourhoodof the maximum curva- 
ture ratio, the results of Bianco et al. are lower by a factor of two for 8, = 10". 
The primary reason for the differences is in the care that is taken in the numerical 
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integration near the body. If the integration in the present method is stopped at 
small, but not ‘small enough’, values of 6 low values of curvature ratio are 
obtained . 

The results from the present method are more accurate than those previously 
published because of the method used in approaching the body, see $5.  In  
addition, the accuracy of the results was checked by using much smaller grid 
sizes and stopping the calculation at  smaller values of 5. Finally, the method of 
‘extrapolation to zero grid size’ was used as a further check. 

Interested readers can obtain detailed numerical results from the authors. 

Note added in proof 
Dr S. H. Maslen has pointed out to the authors that an integral of the gradient 

equations can be found. Combining equations (2.2)-(2.4), or directly from the 
first law of thermodynamics, 

DE 1 Bp p Dp --+-----=o 
Dt y p D t  p2 Dt ‘ 

After forming the gradients an integrable equation for S = (R/p) - (P/yp) is 
obtained which gives 

c-:-SS = - f(p@/2@pv) dc+ const. 

This and the gradients obtained from (2.4) allow R to be eliminated from (3 .3a )  
and (3 .3b) .  Then it can be shown that there are no log terms in (4.1), the only 
singularity being now in the non-homogeneous terms. The form (4.2) is thus 
assured for each gradient. The above integral is analogous to that found by 
Cabannes & Stael (1961). 
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